Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 13394
1.  
i

За­пи­ши­те в виде обык­но­вен­ной дроби бес­ко­неч­ную пе­ри­о­ди­че­скую де­ся­тич­ную дробь 21,00(12).

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 825 конец дроби
2)  целая часть: 21, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 625
3)  целая часть: 21, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 825
4)  целая часть: 12, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 825

Пред­ставь­те в виде дроби вы­ра­же­ние  дробь: чис­ли­тель: 10x, зна­ме­на­тель: 2x минус 3 конец дроби минус 5x   и най­ди­те его зна­че­ние при x=0,5.

1) −5
2) −10
3) 2
4) 5
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния: 12 синус 150 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на ко­си­нус 120 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .

1) −12
2) −3
3) 6
4) 3
4.  
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на 2ab плюс 5a в квад­ра­те плюс 2b плюс 5a.

1)  левая круг­лая скоб­ка a плюс 5b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 5a плюс 2b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 5a плюс 2b в квад­ра­те
4)  левая круг­лая скоб­ка 5a плюс b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка
5.  
i

Pешите урав­не­ние: 8 левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка плюс 3 левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка = минус 21.

1) 0,1
2) 1
3) 1,2
4) 0,2
6.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний 2x минус 3y=14,x плюс 3y= минус 11. конец си­сте­мы .

Для по­лу­чен­но­го ре­ше­ния (x0; y0) вы­чис­ли­те сумму x0 + y0.
1) −4
2) 1
3) −1
4) −3
7.  
i

Най­ди­те  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни x плюс 3 в сте­пе­ни x плюс 2 пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс 2x плюс C
2) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс x плюс C
3) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс 2x плюс C
4) e в сте­пе­ни x плюс дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 конец дроби плюс C
8.  
i

Ра­ди­ус шара равен 12 см. Най­ди­те ра­ди­ус се­че­ния шара, если плос­кость се­че­ния со­став­ля­ет угол 45° с ра­ди­у­сом, про­ве­ден­ным в точку се­че­ния ле­жа­щую на сфере.

1) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
3) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
9.  
i

Pешите си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те минус 2 x плюс 1 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: x в квад­ра­те минус 2 x минус 3, зна­ме­на­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби мень­ше или равно 0. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 0 ; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1 ; 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 4 ; 6 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка 1 ; бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус 1 ; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1 ; 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 2 ; 3 пра­вая квад­рат­ная скоб­ка
4) (3; 4)
10.  
i

Ре­ши­те урав­не­ние:  ко­си­нус 5x плюс ко­си­нус 3x = 0

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс 2 Пи n; Пи плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n; Пи плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
4) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс 2 Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
11.  
i

Ука­жи­те одну из пер­во­об­раз­ных для функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: 6, зна­ме­на­тель: x конец дроби , при x боль­ше 0.

1) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби на­ту­раль­ный ло­га­рифм x
2) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = на­ту­раль­ный ло­га­рифм x
3) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =6 на­ту­раль­ный ло­га­рифм x
4) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус 6 на­ту­раль­ный ло­га­рифм x
12.  
i

Ре­ши­те не­ра­вен­ство: x в кубе минус 5x в квад­ра­те плюс 4x боль­ше или равно 0.

1)  левая квад­рат­ная скоб­ка 0 ; 1 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 4 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 1 ; 4 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 0 ; 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 4 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 0 ; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 4 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
13.  
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).

1) 90°
2) 60°
3) 135°
4) 120°
14.  
i

Вы­чис­ли­те ин­те­грал:  ин­те­грал пре­де­лы: от минус 5 до 1, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те dx .

1) 23
2) −10
3) 15
4) 18
15.  
i

Объем пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равен 400 см3, вы­со­та равна 12 см. Опре­де­ли­те пол­ную по­верх­ность пи­ра­ми­ды.

1) 360 см2
2) 250 см2
3) 260 см2
4) 460 см2
16.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 4 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 128=3 в сте­пе­ни левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .

1) −4
2) −3
3)  минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 3
17.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка конец дроби боль­ше 0, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 7 пра­вая круг­лая скоб­ка мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 6x минус 1 пра­вая круг­лая скоб­ка . конец си­сте­мы .

1)  левая круг­лая скоб­ка 2; 4 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 0; 4 пра­вая квад­рат­ная скоб­ка
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те плюс x плюс 4,y=x плюс 4, минус 4 мень­ше или равно x мень­ше или равно 0.

1)  дробь: чис­ли­тель: 64, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 67, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 64, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 65, зна­ме­на­тель: 3 конец дроби
19.  
i

Най­ди­те сто­ро­ну ромба, если его пло­щадь равна 72 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , а угол между сто­ро­на­ми 135°.

1) 12
2) 11
3) 13
4) 10
20.  
i

Сумма чле­нов бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии в 3 раза боль­ше ее пер­во­го члена. Най­ди­те от­но­ше­ние  дробь: чис­ли­тель: b_7, зна­ме­на­тель: b_5 конец дроби .

1)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
21.  
i

В кубе ABCDA_1B_1C_1D_1 рёбра ко­то­ро­го равны 2, вы­чис­ли­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAC и \overrightarrowB_1D_1.

1) 1
2) 0
3) 4
4) 2
22.  
i

Ука­жи­те урав­не­ние, рав­но­силь­ное урав­не­нию: 2x плюс 3y= минус 7x плюс 8y плюс 4.

1) 27 x=12 плюс 15 y
2)  минус 5 x=4 плюс 5 y
3) 18 x=4 минус 5 y
4) 27 x=15 y плюс 6
23.  
i

Ре­ши­те урав­не­ние \log _1 плюс x левая круг­лая скоб­ка 2x в кубе плюс 2x в квад­ра­те минус 3x плюс 1 пра­вая круг­лая скоб­ка =3.

1) −2
2) 1
3) 0
4) 3
24.  
i

Ре­ши­те не­ра­вен­ство:  ко­рень из: на­ча­ло ар­гу­мен­та: 5 плюс x конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус x конец ар­гу­мен­та боль­ше 0.

1)  левая квад­рат­ная скоб­ка минус 5; 5 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус 5; 5 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 5 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = тан­генс x,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби .

1) y = минус дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 3 конец дроби
2) y = дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 3 конец дроби
3) y = дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x плюс дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 3 конец дроби
4) y = дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
26.  
i

Вы­пуск­ной бал

Це­ре­мо­нию вру­че­ния ат­те­ста­тов вы­пуск­ни­кам ре­ши­ли про­ве­сти в го­род­ском парке. По­стро­и­ли две арки в форме по­лу­кру­га с ра­ди­у­са­ми 6 м и 8 м. Сцену, где будет про­хо­дить кон­церт­ная про­грам­ма сде­ла­ли в виде боль­шо­го круга ра­ди­у­сом 5 м. На сцену по­сте­ли­ли ковер в виде рав­но­сто­рон­не­го тре­уголь­ни­ка, сто­ро­ны ко­то­ро­го от­се­ка­ют сег­мен­ты рав­ных пло­ща­дей. По­ми­мо этого ре­ши­ли со­ору­дить стенд, где будут рас­по­ло­же­ны фо­то­гра­фии вы­пуск­ни­ков в форме тра­пе­ции с ос­но­ва­ни­я­ми рав­ны­ми 10 см и 16 см и вы­со­той рав­ной 15 см.

Kакой про­цент со­став­ля­ет длина малой арки от длины боль­шой арки?

1) 40%
2) 60%
3) 50%
4) 75%
27.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Ра­ди­ус ниж­не­го ос­но­ва­ния шатра равен?

1) 1,5 м
2) 2,5 м
3) 2 м
4) 1 м
28.  
i

Вы­пуск­ной бал

Це­ре­мо­нию вру­че­ния ат­те­ста­тов вы­пуск­ни­кам ре­ши­ли про­ве­сти в го­род­ском парке. По­стро­и­ли две арки в форме по­лу­кру­га с ра­ди­у­са­ми 6 м и 8 м. Сцену, где будет про­хо­дить кон­церт­ная про­грам­ма сде­ла­ли в виде боль­шо­го круга ра­ди­у­сом 5 м. На сцену по­сте­ли­ли ковер в виде рав­но­сто­рон­не­го тре­уголь­ни­ка, сто­ро­ны ко­то­ро­го от­се­ка­ют сег­мен­ты рав­ных пло­ща­дей. По­ми­мо этого ре­ши­ли со­ору­дить стенд, где будут рас­по­ло­же­ны фо­то­гра­фии вы­пуск­ни­ков в форме тра­пе­ции с ос­но­ва­ни­я­ми рав­ны­ми 10 см и 16 см и вы­со­той рав­ной 15 см.

По эс­ки­зу сцены опре­де­ли­те длину дуги сег­мен­та, от­се­чен­но­го ков­ром. Ответ округ­ли­те до сотых  левая круг­лая скоб­ка Пи \approx 3,14 пра­вая круг­лая скоб­ка .

1) 5,25 м
2) 5,23 м
3) 10,46 м
4) 10,47 м
29.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Опре­де­ли­те длину об­ра­зу­ю­щей верх­ней части шатра?

1) 2 ко­рень из 2 м
2) 3 ко­рень из 2 м
3)  ко­рень из 3 м
4) 2 ко­рень из 3 м
30.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Бо­ко­вая по­верх­ность, верх­ней части шатра равна  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка

1) 9 ко­рень из 2 м в квад­ра­те
2) 18 ко­рень из 3 м в квад­ра­те
3) 9 ко­рень из 3 м в квад­ра­те
4) 18 ко­рень из 2 м в квад­ра­те
31.  
i

Функ­ция за­да­на урав­не­ни­ем y = левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка минус 2. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1) 1

2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

3) 0

4)  левая круг­лая скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

32.  
i

Шар впи­сан в конус, длина об­ра­зу­ю­щей ко­то­ро­го равна 25, а пло­щадь пол­ной по­верх­но­сти равна 224π. Уста­но­ви­те со­от­вет­ствие между вы­со­той ко­ну­са, ра­ди­у­сом шара и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Вы­со­та ко­ну­са

Б) Ра­ди­ус шара

1) (10; 14)

2) [15; 19)

3) (21; 26]

4) [5; 7]

33.  
i

Най­ди­те два на­ту­раль­ных числа a и b, если из­вест­но, что от­но­ше­ние чисел a и b равно 2, а от­но­ше­ние суммы их квад­ра­тов этих чисел к их раз­но­сти равно 10.

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) (6; 10)

2) (3; 5)

3) (1; 2]

4) (0; 1)

34.  
i

Даны урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = 64 и  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те минус 2x минус 3=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 2, 0, 5

2) 8, −1, 3

3) −2, 3, 2

4) 8, 3, 6

35.  
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), зна­ме­на­тель ко­то­рой равен 2 и  b_1 = минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) S6

Б) b6 − b3

1) −21

2) −54

3) −47,25

4) 2

36.  
i

Ука­жи­те про­ме­жут­ки, со­дер­жа­щие зна­че­ние вы­ра­же­ния 1 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) (2; 2,9)
2) (2,7; 2,8)
3) (1,5; 2)
4) (2,5; 2,6)
5) (1,2; 1,6)
6) (2,5; 2,8)
37.  
i

Зна­че­ние вы­ра­же­ния 5 синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби плюс 5 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби равно

1) 5
2) 0
3) 1
4) −5
5) −1
6) 10
38.  
i

Cумма трех дан­ных чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 15. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 1, 4 и 19, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Дан­ные три числа равны:

1) 5
2) 8
3) 11
4) 14
5) 2
6) 8
39.  
i

Ре­ши­те си­сте­му ло­га­риф­ми­че­ских урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x минус 2y минус 6 пра­вая круг­лая скоб­ка =0, новая стро­ка \log _2 левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка =1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
5)  дробь: чис­ли­тель: 6, зна­ме­на­тель: 10 конец дроби
6)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
40.  
i

В пра­виль­ной ше­сти­уголь­ной пи­ра­ми­де SABCDEF с вер­ши­ной S сто­ро­на ос­но­ва­ния равна  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , а бо­ко­вое ребро равно 2 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та . Най­ди­те угол между реб­ра­ми AS и SD.

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
3) 60°
4) 45°
5) 90°
6)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби