Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 14603
1.  
i

Пло­щадь се­че­ния шара, удалённого на 2 от цен­тра шара, равна 5π. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью по­верх­но­сти шара, его ра­ди­у­сом и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Пло­щадь по­верх­но­сти шара

Б) Ра­ди­ус шара

1) [3; 10)

2) (110; 116]

3) (60; 80)

4) [120; 124]

2.  
i

Ци­линдр, осе­вым се­че­ни­ем ко­то­ро­го яв­ля­ет­ся квад­рат, впи­сан в шар, ра­ди­ус ко­то­ро­го равен 4. Уста­но­ви­те со­от­вет­ствие между вы­со­той ци­лин­дра, его объ­е­мом и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Вы­со­та ци­лин­дра

Б) Объем ци­лин­дра

1) [176; 188)

2) (3; 5)

3) (5; 6)

4) (158; 161]

3.  
i

Рав­но­бед­рен­ная тра­пе­ция опи­са­на около окруж­но­сти, ра­ди­ус ко­то­рой равен 12. Бо­ко­вая сто­ро­ны тра­пе­ции равна 25. Уста­но­ви­те со­от­вет­ствия:

A) Сред­няя линия тра­пе­ции

Б) Вы­со­та тра­пе­ции

1) 20

2) 25

3) 21

4) 24

4.  
i

Вы­со­та рав­но­бед­рен­но­го тре­уголь­ни­ка равна 4, ос­но­ва­ние равно 6. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью тре­уголь­ни­ка, ра­ди­у­сом окруж­но­сти, опи­сан­ной около него и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Пло­щадь тре­уголь­ни­ка

Б) Ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка

1)  дробь: чис­ли­тель: 25, зна­ме­на­тель: 8 конец дроби

2) 12

3) 24

4) 16

5.  
i

Даны две сферы: с цен­тром в точке O, ра­ди­у­сом R  =  6 и с цен­тром в точке P, ра­ди­у­сом r  =  2. Сферы рас­по­ло­же­ны так что центр каж­дой сферы лежит вне дру­гой сферы. Уста­но­ви­те со­от­вет­ствие между при­ве­ден­ны­ми ниже дан­ны­ми.

A) Сферы ка­са­ют­ся при

Б) Сферы пе­ре­се­ка­ют­ся при

1) OP  =  7

2) OP  =  8

3) OP  =  9

4) OP  =  10

6.  
i

Шар впи­сан в конус, длина об­ра­зу­ю­щей ко­то­ро­го равна 25, а пло­щадь пол­ной по­верх­но­сти равна 224π. Уста­но­ви­те со­от­вет­ствие между вы­со­той ко­ну­са, ра­ди­у­сом шара и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Вы­со­та ко­ну­са

Б) Ра­ди­ус шара

1) (10; 14)

2) [15; 19)

3) (21; 26]

4) [5; 7]

7.  
i

Шар впи­сан в конус, вы­со­та ко­то­ро­го равна 40, а объем  — 1080π. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом ос­но­ва­ния ко­ну­са, ра­ди­у­сом шара и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Ра­ди­ус ос­но­ва­ния ко­ну­са

Б) Ра­ди­ус шара

1) 9

2)  дробь: чис­ли­тель: 36, зна­ме­на­тель: 5 конец дроби

3) 12

4)  дробь: чис­ли­тель: 72, зна­ме­на­тель: 5 конец дроби

8.  
i

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 21 и 39, а вы­со­та равна 40. Уста­но­ви­те со­от­вет­ствие между дли­ной бо­ко­вой сто­ро­ны тра­пе­ции, ра­ди­у­сом окруж­но­сти, опи­сан­ной около нее и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их чис­ло­вые зна­че­ния.

A) Бо­ко­вая сто­ро­на тра­пе­ции

Б) Ра­ди­ус опи­сан­ной окруж­но­сти

1) (24; 27]

2) [12; 18]

3) [6; 9)

4) (36; 42)

9.  
i

В пря­мо­уголь­ный па­рал­ле­ле­пи­пед впи­сан шар, ра­ди­ус ко­то­ро­го равен 4. Уста­но­ви­те со­от­вет­ствие между объ­е­мом па­рал­ле­ле­пи­пе­да, пло­ща­дью его по­верх­но­сти и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Объем па­рал­ле­ле­пи­пе­да

Б) Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да

1) 484

2) 384

3) 480

4) 512

10.  
i

Две окруж­но­сти ра­ди­у­са­ми 2 и 3 ка­са­ют­ся внеш­ним об­ра­зом друг с дру­гом и внут­рен­ним об­ра­зом с окруж­но­стью ра­ди­у­са 15. Уста­но­ви­те со­от­вет­ствие между дли­ной боль­шей сто­ро­ны тре­уголь­ни­ка, об­ра­зо­ван­но­го цен­тра­ми окруж­но­стей, его ме­ди­а­ной, про­ве­ден­ной из вер­ши­ны боль­ше­го угла, и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина боль­шей сто­ро­ны тре­уголь­ни­ка

Б) Длина ме­ди­а­ны тре­уголь­ни­ка, про­ве­ден­ной из вер­ши­ны боль­ше­го угла

1) 12

2) 13

3) 6,5

4) 8

11.  
i

Пло­щадь пра­виль­но­го тре­уголь­ни­ка равна 12 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, ра­ди­у­сом окруж­но­сти, опи­сан­ной около него и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 2 ко­рень из 3

3) 4

4) 3

12.  
i

Ра­ди­ус впи­сан­ной в пра­виль­ный тре­уголь­ник окруж­но­сти равен 10. Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, пло­ща­дью тре­уголь­ни­ка и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Пло­щадь тре­уголь­ни­ка

1) 300 ко­рень из 3

2) 60 ко­рень из 3

3) 20 ко­рень из 3

4) 1200 ко­рень из 3

13.  
i

В пря­мую приз­му, в ос­но­ва­нии ко­то­рой лежит тре­уголь­ник со сто­ро­на­ми 3, 4, 5, впи­сан шар. Уста­но­ви­те со­от­вет­ствие между вы­со­той приз­мы, объ­е­мом приз­мы и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Вы­со­та приз­мы

Б) Объем приз­мы

1) 2

2) 4

3) 6

4) 12

14.  
i

Окруж­ность опи­са­на около пря­мо­уголь­но­го тре­уголь­ни­ка, ка­те­ты ко­то­ро­го равны 6 и 8. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью тре­уголь­ни­ка, ра­ди­у­сом окруж­но­сти и про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их чис­ло­вые зна­че­ния.

A) Пло­щадь тре­уголь­ни­ка

Б) Ра­ди­ус опи­сан­ной окруж­но­сти

1) (40; 50)

2) (21; 27)

3) [5; 8)

4) (11;⁠15]