Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 2184
1.  
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно

1) 24
2) 45
3) 18
4) 36
2.  
i

Сто­ро­ны тре­уголь­ни­ка равны 4 см, 6 см и 8 см. Най­ди­те сто­ро­ны по­доб­но­го ему тре­уголь­ни­ка, если ко­эф­фи­ци­ент по­до­бия равен 2. В от­ве­те ука­жи­те сумму длин сто­рон.

1) 32 см
2) 36 см
3) 30 см
4) 40 см
3.  
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).

1) 90°
2) 60°
3) 135°
4) 120°
4.  
i

По дан­ным ри­сун­ка най­ди­те зна­че­ние x.

1) 36
2) 19
3) 18
4) 12
5.  
i

Bо сколь­ко раз уве­ли­чит­ся объем куба, если его ребра уве­ли­чить в 7 раз.

1) в 144 раз
2) в 125 раз
3) в 14 раз
4) в 343 раз
6.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де бо­ко­вое ребро равно 4 см, а сто­ро­на ос­но­ва­ния — 6 см. Най­ди­те объём пи­ра­ми­ды.

1) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
2) 7 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
3) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
4) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
7.  
i

Объем пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равен 400 см3, вы­со­та равна 12 см. Опре­де­ли­те пол­ную по­верх­ность пи­ра­ми­ды.

1) 360 см2
2) 250 см2
3) 260 см2
4) 460 см2
8.  
i

Най­ди­те объем пра­виль­ной че­ты­рех­уголь­ной усе­чен­ной пи­ра­ми­ды, если сто­ро­ны ее ос­но­ва­ния 1 см и 9 см, а вы­со­та 6 см.

1) 162 см3
2) 182 см3
3) 152 см3
4) 180 см3
9.  
i

К окруж­но­сти про­ве­де­на се­ку­щая СА. Тре­уголь­ник ВОЕ рав­но­сто­рон­ний с пе­ри­мет­ром 18. Длина ка­са­тель­ной СЕ равна

1) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 8
3) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
10.  
i

К окруж­но­сти про­ве­де­на се­ку­щая CA. Тре­уголь­ник BOE рав­но­сто­рон­ний, CA = 12. Длина ка­са­тель­ной CE равна

1) 4 ко­рень из 2
2) 3 ко­рень из 5
3) 6
4) 4 ко­рень из 3
11.  
i

В окруж­ность с цен­тром в точке O впи­сан тре­уголь­ник ABC. Вер­ши­ны тре­уголь­ни­ка раз­би­ва­ют окруж­ность на дуги в от­но­ше­нии BC:CA:AB = 2:7:9. Боль­ший угол тре­уголь­ни­ка COA равен?

1) 100°
2) 140°
3) 138°
4) 124°
12.  
i

В окруж­но­сти с цен­тром в точке O по­стро­е­ны па­рал­лель­ные хорды AB и ED. Угол ECD равен 60°, AC = 12. Длина хорды ED равна

1) 3 ко­рень из 3
2) 6 ко­рень из 6
3) 3 ко­рень из 6
4) 4 ко­рень из 3
13.  
i

Чему равен угол KPN, если из­вест­но, что угол \angle KON= альфа =130 гра­ду­сов .

1) 115°
2) 105°
3) 110°
4) 120°