Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 3371
1.  
i

Ос­но­ва­ни­ем пра­виль­ной тре­уголь­ной пи­ра­ми­ды яв­ля­ет­ся рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 6 см. Вы­со­та пи­ра­ми­ды равна 9 см. Най­ди­те объем пи­ра­ми­ды.

1) 36 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см3
2) 36 см3
3) 54 см3
4) 27 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см3
2.  
i

Най­ди­те объем пра­виль­ной тре­уголь­ной усе­чен­ной пи­ра­ми­ды, вы­со­та ко­то­рой 6 м и сто­ро­ны ос­но­ва­ний 3 м и 4 м.

1)  дробь: чис­ли­тель: 19 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
2)  дробь: чис­ли­тель: 39 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
3) \frca27 ко­рень из 3 2 м3
4)  дробь: чис­ли­тель: 37 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
3.  
i

Най­ди­те вы­со­ту пи­ра­ми­ды, в ос­но­ва­нии ко­то­рой рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 27 см и каж­дое ребро пи­ра­ми­ды об­ра­зу­ет угол 45° с плос­ко­стью ос­но­ва­ния.

1) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
4) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
4.  
i

B пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O — центр ос­но­ва­ния, S — вер­ши­на, SA = 10 см и BD = 16 см. Най­ди­те длину от­рез­ка SO.

1) 7 см
2) 8 см
3) 5 см
4) 6 см
5.  
i

Най­ди­те угол между плос­ко­стя­ми, если  DC = MK =3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , DM =12 см и  CK =6 см.

1) 90°
2) 30°
3) 60°
4) 45°
6.  
i

Най­ди­те объем пра­виль­ной усе­чен­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 9 см и 25 см, а вы­со­та 18 см.

1) 4308 см3
2) 5586 см3
3) 5896 см3
4) 3888 см3
7.  
i

Опре­де­ли­те по ри­сун­ку длину от­рез­ка ВK, если CD = 5,8 см.

1) 3,2 см
2) 2,9 см
3) 2,6 см
4) 5,2 см
8.  
i

Най­ди­те объём куба, если пло­щадь его пол­ной по­верх­но­сти равна 72 см2.

1) 216 см3.
2) 24 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
3) 126 см3.
4) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
9.  
i

Объем пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равен 400 см3, вы­со­та равна 12 см. Опре­де­ли­те пол­ную по­верх­ность пи­ра­ми­ды.

1) 360 см2
2) 250 см2
3) 260 см2
4) 460 см2
10.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де бо­ко­вое ребро равно 4 см, а сто­ро­на ос­но­ва­ния — 6 см. Най­ди­те объём пи­ра­ми­ды.

1) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
2) 7 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
3) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
4) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
11.  
i

Пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы равна 108 см2. Диа­го­наль бо­ко­вой грани на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 45°. Най­ди­те объем дан­ной приз­мы.

1) 16 ко­рень из 2 см3
2) 54 см3
3) 48 см3
4) 54 ко­рень из 3 см3
12.  
i

Из точки к плос­ко­сти про­ве­де­ны пер­пен­ди­ку­ляр и на­клон­на под углом 30° к ее про­ек­ции. Най­ди­те длину на­клон­ной, если длина пер­пен­ди­ку­ля­ра 12 см.

1) 8 см
2) 6 см
3) 24 см
4) 12 см
13.  
i

Най­ди­те об­ра­зу­ю­щую рав­но­сто­рон­не­го ко­ну­са, если пло­щадь осе­во­го се­че­ния равна 16 ко­рень из 3 см2.

(При­ме­ча­ние Решу ЕНТ: ви­ди­мо, рав­но­сто­рон­ним ко­ну­сом со­ста­ви­те­ли за­да­ния на­зы­ва­ют такой, у ко­то­ро­го осе­вое се­че­ние — рав­но­сто­рон­ний тре­уголь­ник.)

1) 6 см
2) 8 см
3) 10 см
4) 12 см
14.  
i

Pас­сто­я­ние от цен­тра шара до плос­ко­сти се­че­ния равно 5 ко­рень из 3 . Ра­ди­ус шара 10, тогда ра­ди­ус се­че­ния шара равен

1) 4
2) 5
3) 3 ко­рень из 3
4) 8
15.  
i

Усе­чен­ный конус, у ко­то­ро­го ра­ди­у­сы ос­но­ва­ний равны 7 и 8, и пол­ный конус такой же вы­со­ты рав­но­ве­ли­ки. Най­ди­те ра­ди­ус ос­но­ва­ния пол­но­го ко­ну­са.

1) 13
2) 10
3) 12
4) 15
16.  
i

Се­ку­щая плос­кость пе­ре­се­ка­ет сферу по окруж­но­сти, ра­ди­ус ко­то­рой равен 2. Если рас­сто­я­ние от цен­тра сферы до се­ку­щей плос­ко­сти равно 4, то пло­щадь сферы равна:

1) 40 Пи
2) 20 Пи
3) 160 Пи
4) 80 Пи
17.  
i

Ра­ди­ус верх­не­го ос­но­ва­ния усечённого ко­ну­са равен 2 м, вы­со­та — 6 м. Най­ди­те ра­ди­ус ниж­не­го ос­но­ва­ния, если его объём равен 38π м3.

1) 4 м
2) 2 м
3) 3 м
4) 1 м
18.  
i

Опре­де­ли­те длину диа­го­на­ли осе­во­го се­че­ния ци­лин­дра с ра­ди­у­сом 5 см и вы­со­той 24 см.

1) 32 см
2) 26 см
3) 30 см
4) 27 см
19.  
i

Ра­ди­ус шара равен 12 см. Най­ди­те ра­ди­ус се­че­ния шара, если плос­кость се­че­ния со­став­ля­ет угол 45° с ра­ди­у­сом, про­ве­ден­ным в точку се­че­ния ле­жа­щую на сфере.

1) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
3) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
20.  
i

В шар ра­ди­у­сом 5 м впи­сан ци­линдр с диа­мет­ром ос­но­ва­ния 6 м. Вы­со­та ци­лин­дра равна

1) 10 м
2) 4 м
3) 6 м
4) 8 м
21.  
i

В рав­но­сто­рон­ний конус впи­сан шар. Най­ди­те пло­щадь по­верх­но­сти шара, если об­ра­зу­ю­щая ко­ну­са равна 6 см.

(При­ме­ча­ние Решу ЕНТ: ви­ди­мо, рав­но­сто­рон­ним ко­ну­сом со­ста­ви­те­ли за­да­ния на­зы­ва­ют такой, у ко­то­ро­го осе­вое се­че­ние — рав­но­сто­рон­ний тре­уголь­ник.)

1) 13 Пи см2
2) 15 Пи см2
3) 16 Пи см2
4) 12 Пи см2
22.  
i

Вы­со­та ци­лин­дра в 3 раза боль­ше ра­ди­у­са его ос­но­ва­ния. Най­ди­те объем ци­лин­дра, если ра­ди­ус ос­но­ва­ния равен  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та .

1) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та Пи
2) 54 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та Пи
3) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та Пи
4) 18 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та Пи
23.  
i

Пря­мо­уголь­ный тре­уголь­ник с ги­по­те­ну­зой 12 см и ост­рым углом 60° вра­ща­ет­ся во­круг мень­ше­го ка­те­та. Най­ди­те вы­со­ту по­лу­чен­ной фи­гу­ры вра­ще­ния.

1) 8 см
2) 10 см
3) 12 см
4) 6 см
24.  
i

Oсевое се­че­ние ци­лин­дра — квад­рат. Ра­ди­ус ос­но­ва­ния ци­лин­дра равен 6 см. Най­ди­те объем ци­лин­дра.

1) 424π см3
2) 428π см3
3) 432π см3
4) 420π см3
25.  
i

Най­ди­те ра­ди­ус шара, если треть его диа­мет­ра равна 6.

1) 12
2) 9
3) 6
4) 10
26.  
i

Pадиус кру­го­во­го сек­то­ра равен 6, а его угол равен 30º. Сек­тор свер­нут в ко­ни­че­скую по­верх­ность. Объем по­лу­чен­но­го ко­ну­са равен

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 8 конец дроби
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 143 конец ар­гу­мен­та Пи , зна­ме­на­тель: 24 конец дроби
27.  
i

Усе­чен­ный конус имеет вы­со­ту 12 см, а ра­ди­у­сы его верх­не­го и ниж­не­го ос­но­ва­ния равны 4 см и 20 см. Най­ди­те об­ра­зу­ю­щую усе­чен­но­го ко­ну­са.

1) 15 см
2) 20 см
3) 8 см
4) 12 см
28.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.

1) 3
2) 3,5
3) 7
4) 14
29.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 15 Пи . Най­ди­те объем V ци­лин­дра, если из­вест­но, что ра­ди­ус его ос­но­ва­ния боль­ше вы­со­ты на 3,5. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 6 умно­жить на V, зна­ме­на­тель: Пи конец дроби .

1) 225
2) 196
3) 250
4) 200
30.  
i

Пусть O и O1  — цен­тры ос­но­ва­ний ци­лин­дра, изоб­ра­жен­но­го на ри­сун­ке. Тогда об­ра­зу­ю­щей ци­лин­дра яв­ля­ет­ся от­ре­зок:

1) DB
2) DC
3) OO1
4) AD
31.  
i

Из пол­но­го бо­ка­ла, име­ю­ще­го форму ко­ну­са вы­со­той 9, от­ли­ли треть (по объ­е­му) жид­ко­сти. Вы­чис­ли­те  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби h в кубе , где h  — вы­со­та остав­шей­ся жид­ко­сти.

1) 324
2) 182
3) 27
4) 243
32.  
i

Bысота ко­ну­са равна 30 см, а длина об­ра­зу­ю­щей — 34 см. Най­ди­те диа­метр ко­ну­са.

1) 33 см
2) 30 см
3) 32 см
4) 31 см
33.  
i

Ци­линдр с ра­ди­у­сом ос­но­ва­ния R = 2 ко­рень из 3 см впи­сан в пра­виль­ную тре­уголь­ную приз­му. Най­ди­те пло­щадь одной бо­ко­вой грани приз­мы, если вы­со­та ци­лин­дра 7 см.

1) 85 см2
2) 80 см2
3) 84 см2
4) 90 см2
34.  
i

Бокал имеет форму ко­ну­са. В него на­ли­та вода на вы­со­ту, рав­ную 4. Если в бокал до­лить воды объ­е­мом, рав­ным одной чет­вер­той объ­е­ма на­ли­той воды, то вода ока­жет­ся на вы­со­те, рав­ной:

1)  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 100 конец ар­гу­мен­та
2) 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
3) 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та