ЕНТ по математике 2021 года. Вариант 5

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Сумма числа 3 и значения частного чисел 24 и 6 равна
 - 1) 6 2) 10 3) 9 4) 5 5) 7
- **2.** Решите уравнение: 22 (1 2x) = (7 5x). 1) 2 2) 3 3) -2 4) 0 5) -1
- 3. Решите систему уравнений: $\begin{cases} x-y=2\pi,\\ \sin x+\cos y=1. \end{cases}$

1)
$$\left\{ \left(\pm \frac{5\pi}{4} + \frac{\pi}{4} + \pi(k+1), \pm \frac{\pi}{4} + \frac{\pi}{4} + 2\pi k \right) : k \in \mathbb{Z} \right\}$$
2)
$$\left\{ \left(\pm \frac{3\pi}{4} + 2\pi k, \pm \frac{\pi}{4} + 2\pi k \right) : k \in \mathbb{Z} \right\}$$
3)
$$\left\{ \left(\pm \frac{\pi}{4} - \frac{\pi}{4} + 2\pi k, \pm \frac{\pi}{4} - \frac{\pi}{4} + 2\pi k \right) : k \in \mathbb{Z} \right\}$$
4)
$$\left\{ \left(\pm \frac{\pi}{4} + 2\pi k, \pm \frac{\pi}{4} + 2\pi k \right) : k \in \mathbb{Z} \right\}$$
5)
$$\left\{ \left(\pm \frac{\pi}{4} + \frac{\pi}{4} + 2\pi (k+1), \pm \frac{\pi}{4} + \frac{\pi}{4} + 2\pi k \right) : k \in \mathbb{Z} \right\}$$

4. Числитель дроби на 4 меньше ее знаменателя Если эту дробь сложить с обратной ей дробью, то получится число $\frac{106}{45}$. Найдите исходную дробь.

1)
$$\frac{3}{7}$$
 2) $\frac{9}{13}$ 3) $\frac{11}{15}$ 4) $\frac{13}{17}$ 5) $\frac{5}{9}$

5. Какой промежуток является решением неравенства: $\frac{x-1}{2-x} \leqslant 0$.

1)
$$(-\infty; 1] \cup (2; +\infty)$$
 2) $[0; 1] \cup (2; +\infty)$ 3) $[1; 2]$ 4) $(-\infty; 1] \cup (2; +\infty)$ 5) $(-\infty; 1] \cup [2; +\infty)$

- 6. Решите систему неравенств: $\begin{cases} \log_{\frac{1}{2}}(x+2) \leqslant -1, \\ \log_{3}(5x-1) \geqslant 2. \end{cases}$ 1) (-1;2) 2) $(-\infty;2)$ 3) $[-2;+\infty)$ 4) (-1;3] 5) $[2;+\infty)$
- 7. Найдите первые пять членов последовательности натуральных чисел кратных 5.
- 1) 5; 10; 15; 20; 25 2) 10; 20; 30; 40; 50 3) 0; 5; 25; 125; 625 4) 0; 5; 10; 15; 20 5) 5; 25; 50; 75; 100
- **8.** Для функции $f(x) = e^x \ln x$ найдите f(1).

1)
$$\frac{1}{e}$$
 2) 2 3) 2e 4) 0 5) e

9. Трапеция вписана в окружность так, что её большее основание совпадает с диаметром, а боковая сторона равна радиусу окружности. Меньший угол трапеции равен?

3) 55°

1) 70°

2) 45°

4) 35°

10. Радиус шара равен 12 см. Найдите радиус сечения шара, если плоскость сечения составляет угол 45° с радиусом, проведенным в точку сечения лежащую на сфере.

1) $4\sqrt{2}$ cm 2) $3\sqrt{2}$ cm 3) $5\sqrt{3}$ cm 4) $6\sqrt{2}$ cm 5) $2\sqrt{3}$ cm

11. Найдите сумму бесконечной геометрической прогрессии, определяющейся по формуле $b_n = 6 \cdot \left(\frac{1}{3}\right)^n$.

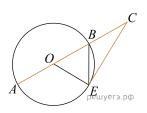
1)
$$S = 9$$
 2) $S = \frac{1}{3}$ 3) $S = 3$ 4) $S = 2$ 5) $S = \frac{1}{9}$

12. Значение переменной x, при котором верно неравенство: $\frac{1}{5} < x < \frac{1}{2}$.

1)
$$\frac{1}{4}$$
 2) $\frac{1}{10}$ 3) $\frac{9}{10}$ 4) $\frac{4}{5}$ 5) $\frac{3}{4}$

13. Решите систему неравенств: $\begin{cases} 4^x - 6 \cdot 2^x + 8 \le 0, \\ 2x - 3 > 0. \end{cases}$

1) (1; 2) 2) (1,5; 2] 3) [1,5; 2]

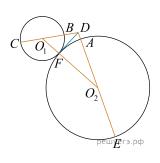

4) [1; 2]

14. Химическая реакция подчиняется закону $H(t) = 5 \ln t + t^2$. Найдите скорость реакции в момент времени t=2.

> 1)5 2) 4 3) 4,5

4) 6 5) 6,5

15. К окружности проведена секущая *CA*. Треугольник *BOE* равносторонний с периметром 18. Длина касательной СЕ равна



1) $4\sqrt{3}$ 2) 8 3) $6\sqrt{2}$ 4) 5 5) $6\sqrt{3}$

16. Упростите $\sqrt{\frac{a^{6n+3}b^{n+3}}{a^{2n-1}b^{1-3n}}}$, где a>0 и b>0.

1) $a^{n+2}b^{2n-1}$ 2) $a^{2n+2}b^{2n+1}$ 3) $a^{2n+2}b^{2n-1}$ 4) $a^{2n+1}b^{2n-1}$ 5) $a^{2n+2}b^{2-n}$

17. Даны касающиеся окружности с центрами O_1 и O_2 , DF — общая касательная; DC = 16, $FO_1 = 6$, DA = 2. Радиус второй окружности равен C = 0

1) 12 2)9 3) 10 4) 15 5)8

18. Токарь должен был изготовить 120 деталей к определенному сроку. Применив новый резец, он стал обтачивать на 6 деталей в день больше и поэтому закончил работу на один день раньше срока. Сколько деталей в день он должен был изготавливать по плану?
1) 24 2) 30 3) 27 4) 26 5) 25
19. Найдите решение системы неравенств: $\begin{cases} \frac{4}{x} - \frac{x}{4} \geqslant 0, \\ \frac{3 - 2x}{x - 2} > 1. \end{cases}$
1) (2; 4) 2) [1; 2] 3) $\left[1\frac{2}{3}; 2\right]$ 4) (1; 2) 5) $\left(1\frac{2}{3}; 2\right)$
20. Усеченный конус имеет высоту 12 см, а радиусы его верхнего и нижнего основания равны 4 см и 20 см. Найдите образующую усеченного конуса. 1) 15 см 2) 20 см 3) 8 см 4) 12 см 5) 13 см
Бросают одновременно два игральных кубика, на гранях которых расположены числа от 1 до 6.
21. Количество способов выпадения четного числа равна
1) 3 2) 9 3) 6 4) 4 5) 2
22. Количество способов выпадения нечетного числа равна
1) 3 2) 2 3) 6 4) 4 5) 9
23. Сколькими способами может выпасть в сумме число 5? 1) 3 2) 6 3) 9 4) 4 5) 2
24. Сколькими способами может выпасть в сумме четное число?
1) 10 2) 16 3) 18 4) 14 5) 12
25. Какова вероятность того, что сумма чисел на двух игральных кубиках будет четным числом. 1) $\frac{1}{2}$ 2) $\frac{1}{6}$ 3) $\frac{1}{4}$ 4) $\frac{1}{9}$ 5) $\frac{1}{3}$
2 9 6 9 4 9 9 3
26. Среди натуральных чисел от 32 до 42 включительно выберите те числа, которые имеют больше 5 делителей (кроме 1 и самого числа).
1) 33 2) 42 3) 32 4) 40 5) 34 6) 35 7) 38 8) 36
27. Корнями уравнения $2 x +5=9$ являются?
1) 2 2) 3 3) -4 4) -2 5) -1 6) 1 7) 4 8) -3
28. Какому промежутку принадлежит произведение $x\cdot y$, где $(x;y)$ — решение системы уравнений: $\begin{cases} \sqrt{x}+3\sqrt{y}=4,\\ 4\sqrt{x}-\sqrt{y}=3. \end{cases}$
1) [-1; 0] 2) (2; 7) 3) (4; 7) 4) (0; 3) 5) [2; 5] 6) [-3; 5] 7) (2; 3) 8) [1; 5]
29. Двое рабочих изготовили 60 деталей за время t . Производительность первого составляет $\frac{2}{3}$
производительности второго. Из ниже приведенных ответов укажите производительность второго ра-
бочего, если известно, что <i>t</i> — целое число. 1) 16 деталей в час 2) 22 деталей в час 3) 10 деталей в час 4) 15 деталей в час 5) 20 деталей в час 6) 18 деталей в час 7) 12 деталей в час 8) 9 деталей в час
30. Укажите все решения неравенства $\sin x \geqslant \frac{\sqrt{3}}{2}$ на интервале $(0; 5\pi)$.

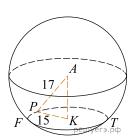
1)
$$\left[\frac{7\pi}{3}; \frac{8\pi}{3}\right]$$
 2) $\left[\frac{13\pi}{3}; \frac{14\pi}{3}\right]$ 3) $\left[\frac{\pi}{6}; \frac{2\pi}{6}\right]$ 4) $\left[\frac{\pi}{3}; \frac{2\pi}{6}\right]$ 5) $\left[\frac{7\pi}{6}; \frac{8\pi}{6}\right]$ 6) $\left[\frac{\pi}{3}; \frac{2\pi}{3}\right]$ 7) $\left[\frac{13\pi}{6}; \frac{14\pi}{6}\right]$ 8) $\left[\frac{\pi}{6}; \frac{2\pi}{3}\right]$

31. Какому промежутку принадлежит произведение $x \cdot y$, где (x; y) — решение системы уравнений:

$$\begin{cases} \log_5(x^2+y^2)=2,\\ \log_2x-2=\log_23-\log_2y. \end{cases}$$
 1) [3; 15] 2) (0; 13) 3) [-4; 1] 4) (2; 17) 5) [-4; 10] 6) [1; 5] 7) (2; 12) 8) (4; 9)

32. Найдите первообразную для функции $f(x) = 1 + x + \cos 2x$, график которой проходит через точку M(0; 1).

1)
$$2x + \frac{x^2}{2} + \frac{\sin 2x}{2} + 1$$
 2) $3 + \frac{x^2}{2} + \sin x + 1$ 3) $x + \frac{x^2}{2} + \frac{\sin 2x}{2} + 1$
4) $x + \frac{x^2}{2} + \sin x \cos x + 1$ 5) $x + x^2 + \sin x \cos x + 1$ 6) $x + \frac{x^2}{2} + \cos x + 1$
7) $x + x^2 + \frac{\sin 2x}{2} + 1$ 8) $3 + \frac{x^2}{2} + \frac{\sin x}{2} + 1$


33. Определите координаты точек, симметричных точке пересечения прямых y = 2x + 3u y = -3x + 1, относительно осей координат и начала отчета.

1)
$$\left(-\frac{1}{5}; \frac{3}{5}\right)$$
 2) $\left(\frac{2}{5}; \frac{11}{5}\right)$ 3) $\left(\frac{2}{5}; -\frac{11}{5}\right)$ 4) $\left(\frac{1}{5}; -\frac{3}{5}\right)$ 5) $\left(-\frac{2}{5}; -\frac{11}{5}\right)$ 6) $\left(\frac{1}{5}; \frac{3}{5}\right)$ 7) $\left(\frac{1}{5}; \frac{2}{5}\right)$ 8) $\left(\frac{1}{5}; -\frac{2}{5}\right)$

34. Материальная точка движется со скоростью $\upsilon(t)=1-2\sin^2t$. Найдите интервал, в который входит значение пути, пройденного материальной точкой за промежуток времени от t=0 до $t=0,25\pi$.

1)
$$\begin{bmatrix} 1;1,5 \end{bmatrix}$$
 2) $\begin{bmatrix} -1;-0,5 \end{bmatrix}$ 3) $\begin{bmatrix} -1;0 \end{bmatrix}$ 4) $(-0,75;0,75)$ 5) $\begin{bmatrix} -1;-0,25 \end{bmatrix}$ 6) $\begin{bmatrix} 0;1,5 \end{pmatrix}$ 7) $(0,5;1)$ 8) $(0,5;1,25]$

35. Точка A — центр шара. По данным рисунка найдите площадь сферической части меньшего шарового сегмента.

1)
$$306\pi$$
 2) $\frac{200}{3}\pi$ 3) $\frac{500}{3}\pi$ 4) 208π 5) $\frac{100}{3}\pi$ 6) 108π 7) 250π 8) 100π