Реальная версия ЕНТ по математике 2021 года. Вариант 3

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Сырой кирпич весит $4\frac{1}{2}$ кг, при сушке он теряет $\frac{4}{5}$ кг. Определите вес высушенного кирпича.

1) 3,7 кг

2) 3,4 кг 3) 4,1 кг 4) 3,6 кг 5) 3,5 кг

2. Положительный корень $\int\limits_0^t {(x - 2) \, dx} = 6$ равен? 1) 6 2) 4 3) 5 4) 2 5) 1

3. Если числа x и y решения системы уравнений $\begin{cases} 2^{x+y} = 64, \\ \sqrt{x-y} = 2, \end{cases}$ то их част-

ное $\frac{x}{v}$ равно

3) 0 4) 7 5) 3

4. Имеем 24 м ткани разделенной на части, обратно пропорционально числам 3 и 5. Получили отрезы ткани длиной.

1) 9 м и 15 м

2) 14 м и 10 м 3) 9 м и 5 м 5) 8 м и 16 м

4) 12 м и 12 м

5. Учитель дал задание: из предложенных последовательностей

a) $\frac{1}{2}$; $\frac{1}{3}$; $\frac{1}{4}$; $\frac{1}{5}$; ... 6) $\frac{1}{3}$; $\frac{1}{6}$; $\frac{1}{12}$; $\frac{1}{24}$; ... B) 10; 8; 6; 2;...

выбрать бесконечно убывающую геометрическую прогрессию и найти сумму всех его членов. Если ученик выполнил задание верно, то в ответе он получил.

1) $1\frac{2}{3}$ 2) $\frac{2}{3}$ 3) 3 4) 1 5) $2\frac{1}{3}$

6. Решите неравенство: $\cos x \le 1$.

1) $(-\infty; +\infty)$ 2) $\left(\frac{\pi}{2} + 2\pi n; \pi + 2\pi n\right), n \in \mathbb{Z}$

3) $\left(\frac{\pi}{2} + \pi n; \pi + 2\pi n\right], n \in \mathbb{Z}$ 4) $\left(\frac{\pi}{2} + \pi n; \pi + 2\pi n\right), n \in \mathbb{Z}$

5) $\left[\frac{\pi}{2} + \pi n; \pi + 2\pi n\right], n \in \mathbb{Z}$

7. Разложите многочлен на множители: ax - ay + xb - yb.

1) (9; 16)

4) (x-y)(a-b) 5) (y-x)(a+b)

1) (x+y)(a+b) 2) (x-y)(a+b) 3) (x+y)(a-b)

8. Решите систему уравнений: $\begin{cases} 3\sqrt{x} - 2\sqrt{y} = 6, \\ 2\sqrt{x} + 5\sqrt{y} = 23. \end{cases}$

2) (16; 1) 3) (16; 9) 4) (1; 16)

5) (4; 25)

9. Найдите наименьший положительный период функции: $y = 2 \lg 3x$.

1) 2π 2) $\frac{\pi}{2}$ 3) π 4) $\frac{\pi}{3}$ 5) $\frac{\pi}{6}$

10.	Найдите	площадь	ромба,	если	его	диагонали	относятся	как 3	: 4,	а боко-
вая стор										

1) 192

2) 320 3) 100 4) 96

5) 150

11. Найдите значение выражения
$$\sin^2 \alpha - \cos \alpha + \sqrt{3} \operatorname{tg} \alpha$$
 при $\alpha = \frac{\pi}{3}$.

1) $3\frac{1}{2}$ 2) $3\frac{1}{4}$ 3) $3\frac{1}{3}$ 4) $4\frac{1}{2}$ 5) $4\frac{1}{3}$

12. Усеченный конус, у которого радиусы оснований равны 7 и 8, и полный конус такой же высоты равновелики. Найдите радиус основания полного конуса.

1) 13

2) 10

3) 12

4) 15

13. Найдите знаменатель геометрической прогрессии (b_n) , $b_{19} - b_{17} = 1800$, a $b_{18} - b_{16} = 600$.

1) $q = \frac{1}{6}$ 2) $q = \frac{1}{3}$ 3) q = 3 4) q = 6 5) $q = \frac{2}{9}$

14. Решите систему неравенств $\begin{cases} x^2 \geqslant 2,25, \\ (x+2)^2 \leqslant 1. \end{cases}$

1) (-3; -1] 2) [-3; -1,5) 3) [-1; 1,5] 4) (-3; 1,5) 5) [-3; -1,5]

15. Решите неравенство: $\frac{4}{2r-9} > 0$.

1) (-4; 4) 2) $(-4,5; +\infty)$ 3) $(-\infty; 4,5)$ 4) $(-\infty; -4,5)$ 5) $(4,5; +\infty)$

16. В магазине было продано половина всей партии привезенных пачек чая и еще 30 пачек. На следующий день продали половину оставшейся партии и еще 10 пачек. В результате в магазине осталось 150 пачек чая. Сколько пачек чая содержалось в партии первоначально?

1) 700

2) 760 3) 740 4) 730

5) 750

17. Вычислите $\frac{49^{25} \cdot 625^{15}}{(5^{12})^5 \cdot (7^{16})^3}.$

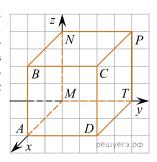
2) 245 3) 49 4) 135

5) 35

18. Укажите уравнение, равносильное уравнению: 2x + 3y = -7x + 8y + 4.

1)
$$27x = 12 + 15y$$
 2) $-5x = 4 + 5y$ 3) $18x = 4 - 5y$
4) $27x = 15y + 6$ 5) $9x = 10y - 8$

19. Решите систему неравенств: $\begin{cases} \sqrt{2x-1} < x-2, \\ 5x+10 \ge 0. \end{cases}$


1)
$$\left(-\frac{1}{2};1\right] \cup (5;+\infty)$$
 2) $\left(\frac{1}{2};1\right] \cup (2;+\infty)$ 3) [1; 2]
4) $(-0,5;2]$ 5) $(5;+\infty)$

20. Две окружности имеют общий центр. На большей окружности заданной уравнением $(x-3)^2 + (y-5)^2 = 100$ отмечены точки A(9; 13) и B(3; -5) так, что хорда АВ касается меньшей окружности. Найдите квадрат радиуса меньшей окружности.

1) 10

2) 12 3) 6 4) 8 5) 15

Для изготовления стальных дизайнерских шаров, завод получил заготовки в виде куба. Программная установка для обтачивания деталей требует ввода координат заготовки в трёхмерном пространстве. Программист вводит систему координат в вершину куба как показано на рисунке.

21. Определите координаты точки B.

- 1) (4; 4; 0)
- 2) (4; 0; 4)
 - 3) (4; 4; 4)
- 4)(0;4;0)

5) 1

5) (4; 0; 0)

22. Длина ребра куба равна

- 1) 5
- 3)4
- 4)2

23. Определите координаты точки C.

- 1) (4; 0; 0)
- 2)(0;4;0)
- 3) (4; 4; 0)
- 4) (4; 4; 4)
- 5) (4; 0; 4)

24. Определите координаты центра шара вписанного в данный куб.

- 1) (2; 2; 2)
- 2) (2; 0; 2)
- 3) (2; 0; 0)
- 4)(0; 2; 0)
- 5) (2; 2; 0)

25. Для изготовления детали в форме шара составьте его уравнение.

1)
$$(x+2)^2 + (y+2)^2 + (z+2)^2 = 4$$

2)
$$(x+2)^2 + (y+2)^2 + (z+2)^2 = 2$$

3)
$$(x-2)^2 + (y-2)^2 + (z-2)^2 = 2$$

4)
$$(x-2)^2 + (y-2)^2 + (z-2)^2 = 4$$

5)
$$(x-2)^2 - (y-2)^2 - (z-2)^2 = 4$$

26. Вычислите значение выражения: $\frac{|-2,5+4,6|}{-1,6+|2\cdot3,5-|-4||}.$ 1) 1,7 2) $\frac{3}{4}$ 3) $\frac{2}{7}$ 4) $\frac{1}{3}$ 5) 1,5 6) 2 7) $1\frac{1}{2}$ 8) $\frac{1}{4}$

27.

Показать ответ

28. Слиток золота массой 36 кг содержит 45% меди. Какую массу меди добавить к сплаву, чтобы концентрация стала 60%.

- 1) 14 кг 500 г.
- 2) 13,5 кг
- 3) 12 кг 300 г.
- 4) 3 κ_Γ

- 5) 13 кг 500 г.
- 6) 14,5 кг
- 7) 12 кг
- 8) 25 кг 500 г.

29. Стороны треугольника равны 4 см, 6 см и 8 см. Найдите стороны подобного ему треугольника, если коэффициент подобия равен 2.

- 1) 12 см
- 2) 16 cm
- 3) 13 см 7) 10 см
- 4) 6 cm 8) 8,2 см
- 5) 18 см
- 6) 8 cm

30. Даны комплексные числа $z_1 = 3 + 2i$ и $z_2 = 5 - 3i$. Найдите для данных чисел верные равенства из предложенных ниже.

- 3) $z_2 + \overline{z_1} = 8 5i$
- 1) Im $(z_2) = 3$ 2) $|z_1| + |z_2| = \sqrt{13} + \sqrt{34}$ 3) $z_2 + \overline{z_1} = 8 5$ 4) Re $(z_2) = 5$ 5) $z_1 + \overline{z_2} = 8 i$ 6) $|z_1| + |z_2| = \sqrt{6} + \sqrt{15}$ 7) Im $(z_1) = -2$ 8) Re $(z_1) = 2$

31. Определите, при каких значениях аргумента значение $y = \frac{2}{r^2 + 1}$ равно

- 1) 1
- 2) 3
- 3) -0.5
- 5) 0,5 4) -2
- 6) -17) 2
- 8)0

1.

- **32.** Сумма цифр четырехзначного числа равна 16 и все цифры числа образуют арифметическую прогрессию. Причем, цифра единиц на 4 больше цифры сотен. Выберите верные утверждения.
 - 1) последняя цифра четная
 - 2) первые две цифры в сумме больше последней
 - 3) вторая и последняя цифры в сумме дают 10
 - 4) первая цифра нечетная
 - 5) число из последних двух цифр меньше 50
 - 6) произведение всех цифр меньше 105
 - 7) сумма всех цифр больше 20
 - 8) первые три цифры образуют число, кратное 5
 - **33.** Упростите выражение: $\frac{a^{\frac{3}{4}} 2a^{\frac{1}{4}}}{a 2a^{\frac{1}{2}}}$.
 - 1) $a^{-\frac{1}{4}}$ 2) $a^{-\frac{1}{2}}$ 3) $a^{\frac{3}{4}}$ 4) $\frac{-3}{4}$ 5) $\frac{1}{a^4}$ 6) $a^{\frac{1}{2}}$ 7) $\frac{1}{a^{\frac{1}{4}}}$ 8) $\frac{1}{a^{0.75}}$
- **34.** Укажите промежутки, содержащие значение хорды, на которую опирается угол в 120° , вписанный в окружность радиуса $\sqrt{3}$.
 - 1) (1; 5) 2) (2; 4) 3) (4; 7) 4) (0; 3) 5) (2; 5) 6) (5; 8) 7) (1; 3) 8) (3; 5)
- **35.** Определите, при каком значении a касательная к параболе $y=ax^2+x-3$ в точке M(1;a-2) параллельна прямой, заданной формулой y-2x=12.
 - 1) -1 2) $1\frac{2}{3}$ 3) 1 4) $2\frac{1}{3}$ 5) $-\frac{1}{2}$ 6) $-1\frac{2}{3}$ 7) $\frac{1}{2}$ 8) $-2\frac{1}{3}$