Реальная версия ЕНТ по математике 2021 года. Вариант 4122

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Упростите выражение: $(0, 2\sqrt{11} + 1)(1 - 0, 2\sqrt{11})$.

- 1) 0,56 2) 0,78 3) -0,56 4) -0,78 5) 0,44
- **2.** Решить уравнение: $16x^2 9 = 0$.

- 1) 4 u 4 2) 3 u 3 3) $\frac{3}{4} \text{ u} \frac{3}{4}$ 4) $\frac{9}{16} \text{ u} \frac{9}{16}$ 5) 3 u 3
- **3.** Решите систему уравнений: $\begin{cases} 5x 2y = 15, \\ -2x + y = -7. \end{cases}$

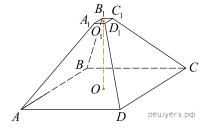
- 4. Число 9 разбили на три слагаемых так, что второе слагаемое на 25% меньше первого, а третье — на 1 меньше второго. Найдите первое слагаемое

- 1) 4,5 2) 4,8 3) 3,6 4) 5

- **5.** Какой промежуток является решением неравенства: $\frac{x-1}{2-r} \leqslant 0$.

- 1) $(-\infty; 1] \cup (2; +\infty)$ 2) $[0; 1] \cup (2; +\infty)$ 3) [1; 2]
 - 4) $(-\infty; 1] \cup (2; +\infty)$ 5) $(-\infty; 1] \cup [2; +\infty)$
- **6.** Решите систему уравнений: $\begin{cases} 3^{y} \cdot 2^{x} = 972, \\ y x = 3. \end{cases}$

- 7. Найдите первый член арифметической прогрессии, если сумма двадцати яти первых членов прогрессии равна 250 и d=3.


1) 23,5

- 2) -24 3) -26 4) -20,5 5) 22,5
- **8.** Найдите область значений квадратичной функции: $y = -x^2 + 4x 3$.

- 1) $(-\infty; 1]$ 2) $(-\infty; 1)$ 3) (-1; 1] 4) $[1; +\infty)$ 5) [-1; 1]
- 9. Из круга радиусом 10 вырезали квадрат наибольшего размера. Площадь оставшейся части круга при $\pi = 3,14$ равна

1) 212

- 2) 126
- 4) 145
- 5) 114
- 10. Найдите объем правильной четырехугольной усеченной пирамиды, если стороны ее основания 1 см и 9 см, а высота 6 см.

- 1) 162 cm^3 2) 182 cm^3 3) 152 cm^3 4) 180 cm^3
- $5) 175 \text{ cm}^3$

11. В арифметической прогрессии сумма $a_4 + a_6 = 20$. Найдите пятый член данной прогрессии.

- 2) 14 3) 10 4) 18 5) 12

12. Вычислите: $3 - |\sqrt{3} - 4|$.

- 1) $\sqrt{3}-7$ 2) $1-\sqrt{3}$ 3) $7-\sqrt{3}$ 4) $\sqrt{3}-1$

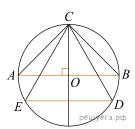
13. Найдите целые решения системы неравенств: $\begin{cases} 2(3x+2) > 5(x-1), \\ 7(x+2) < 3(2x+3). \end{cases}$

- 1) -9; -8; -7 2) -8; -7; -6; -5 3) -8; -7 4) -3; -5 5) -8; -7; -6

14. Вычислите объем фигуры, получаемой вращением вокруг оси Ox дуги кривой $y = \cos x, x \in \left[0; \frac{\pi}{2}\right]$.

- 1) $\frac{\pi}{2}$ 2) π^3 3) $\frac{\pi}{3}$ 4) $\frac{\pi^2}{4}$ 5) $\frac{\pi^2}{6}$

15. Сторона ромба равна 12. Косинус одного из его углов равен $\frac{2}{3}$. Площадь ромба равна


- 1) 40

- 2) 48 3) $24\sqrt{5}$ 4) $12\sqrt{5}$ 5) $48\sqrt{5}$

16. Вычислите: $\frac{72^{2k+1}}{6^{6k} \cdot 9^{1-k}}$.

1) 2^{6k} 2) 6 3) 6^{3k-1} 4) 8

17. В окружности с центром в точке O построены параллельные хорды AB и ED. Угол ECD равен 60° , AC = 12. Длина хорды ED равна

- 1) $3\sqrt{3}$ 2) $6\sqrt{6}$ 3) $3\sqrt{6}$ 4) $4\sqrt{3}$

18. Моторная лодка прошла 21 км по течению реки и обратно, затратив 2 ч 40 мин. в другой раз та же моторная лодка прошла по течению реки 18 км и 14 км против течения реки, затратив на весь путь 2 ч. Какова собственная скорость лодки?

- 1) 10 км/ч
- 2) 18 км/ч 3) 16 км/ч 4) 2 км/ч
- 5) 12 км/ч

19. Решите систему неравенств: $\begin{cases} 5^{x^2-9} \geqslant 625^{2x}, \\ \frac{4x+5}{7} - \frac{3x+2}{4} \leqslant \frac{7-2x}{9}. \end{cases}$

- 1) $x \in (-\infty; -1] \cup \left[9\frac{1}{4}; +\infty\right)$ 2) $x \in (-\infty; 1] \cup [9; +\infty)$
- 3) $x \in (-\infty; -1] \cup \left[9; 6\frac{1}{4}\right]$ 4) $x \in (-\infty; -1] \cup \left[9; 9\frac{1}{4}\right]$

 - 5) $x \in (-\infty; -1] \cup [9; +\infty)$

20. Двугранный угол равен 60° . Из точки N на его ребре в гранях проведены перпендикулярные ребру отрезки NB = 8 см, AN = 2 см. Найдите длину AB

- 1) $6\sqrt{13}$ cm 2) $2\sqrt{13}$ cm 3) $4\sqrt{13}$ cm 4) $3\sqrt{13}$ cm 5) $5\sqrt{13}$ cm

Строительной компании дали задание построить детскую игровую площадку, в которой должен быть домик в виде башни. Коническая крыша башни имеет диаметр 6 м и высоту 2 м. Для этого купили листы кровельного железа размерами 0,7 м × 1,4 м. На швы и обрезки тратится 10 % от площади крыши.

21. Чему равна площадь одного кровельного листа?

1) 1,6
$$\text{m}^2$$
 2) 0,98 m^2 3) 0,96 m^2 4) 9,8 m^2 5) 98 m^2

$$3) 0.96 \text{ m}^2$$

$$5)98 \text{ m}^2$$

22. Чему равна площадь поверхности башни?

1)
$$3\sqrt{11}\pi \text{ m}^2$$

1)
$$3\sqrt{11}\pi \text{ m}^2$$
 2) $12\pi \text{ m}^2$ 3) $3\sqrt{13}\pi \text{ m}^2$ 4) $3\sqrt{15}\pi \text{ m}^2$ 5) $5\sqrt{13}\pi \text{ m}^2$

3)
$$3\sqrt{13}\pi$$
 M

4)
$$3\sqrt{15}\pi$$
 M

23. Сколько нужно использовать материала (кровельного железа) для покрытия крыши с учетом швов и обрезок? (округлите до целых). $(\pi = 3, 14)$

$$2) 45 \text{ m}^2$$

3)
$$37 \text{ m}^2$$

1)
$$52 \text{ m}^2$$
 2) 45 m^2 3) 37 m^2 4) 25 m^2 5) 31 m^2

24. Какое количество листов понадобится для башни?

2) 30

25. Во сколько раз увеличится объем конуса, если его радиус увеличить в 4 раза, а высоту оставить прежней?

5) 40

26. Среди натуральных чисел от 32 до 42 включительно выберите те числа, которые имеют больше 5 делителей (кроме 1 и самого числа).

27. Корнями уравнения $\frac{\lg\left(x^2-18x+100\right)-2}{\lg\left(x^2+18x+100\right)}=0$ являются? $1)-10\qquad 2)\ 10\qquad 3)-18\qquad 4)\ 9\qquad 5)\ 18\qquad 6)\ 0\qquad 7)\ 2$ $8)\ 1$

$$1) -10$$

28. Какому промежутку принадлежит отношение $\frac{x}{y}$, где (x; y) — решение

системы уравнений:
$$\begin{cases} \sqrt{2x+3} + 3\sqrt{y+3} = 7, \\ 5\sqrt{2x+3} - 2\sqrt{y+3} = 1. \end{cases}$$

29. Смешали 50% и 70% растворы кислоты и получили 65% раствор. В каких пропорциях их смешали?

30. Укажите интервалы, удовлетворяющие неравенству: $x^2 - |x| - 6 > 0$.

1)
$$[3; +\infty)$$
 2) $(-\infty; -3]$ 3) $(-\infty; +\infty)$ 4) $(3; +\infty)$ 5) $[-3; 6]$ 6) $(-\infty; -3)$ 7) $(-3; 3)$ 8) $[-6; 3]$

2)
$$(-\infty; -3]$$

$$(-\infty; +\infty)$$

4)
$$(3; +\infty)$$

31. Найдите значение выражения $\sqrt{x \cdot y}$, где (x; y) — решение системы уравнений: $\begin{cases} x - y = 24, \\ \sqrt{x} + \sqrt{y} = 6. \end{cases}$

1)
$$\sqrt{25}$$
 2) 6 3) 7 4) $\sqrt{49}$ 5) $\sqrt{8^2}$ 6) 5 7) $\sqrt{36}$ 8) $\sqrt{5^2}$

$$\sqrt{8^2}$$

7)
$$\sqrt{3}$$

32. Найдите производную функции: $y = \frac{2x+1}{r^2}$.

1)
$$\frac{-(2x+1)}{x^4}$$
 2) $\frac{2(x^2+1)}{x^4}$ 3) $\frac{-2(x+2)}{x^4}$ 4) $\frac{-(2x+1)}{x^4}$
5) $\frac{-2(x^3)+1}{x^4}$ 6) $\frac{-2x+1}{x^2}$ 7) $\frac{-(2x+1)}{x^3}$ 8) $\frac{-2x(x^2+1)}{x^3}$

$$\frac{2(x^2+1)}{x^4}$$
 3) $\frac{-2}{x^4}$

4)
$$\frac{-(2x+1)}{x^4}$$

5)
$$\frac{-2(x^3)+}{x^4}$$

6)
$$\frac{-2x+}{x^2}$$

7)
$$\frac{-(2x+1)^{2}}{x^{3}}$$

8)
$$\frac{-2x(x^2+1)}{x^3}$$

33. Найдите стороны треугольника *МКР*, если $\angle M = 15^{\circ}$ и $\angle P = 30^{\circ}$, а высота MH = 4 см.

1) $(36+36\sqrt{3})$ cm 2) 8 cm 3) $8\sqrt{2}$ cm 4) 12 cm 6) 27 cm 7) $(4\sqrt{3}-4)$ cm 8) $4\sqrt{2}$ cm

34. Напишите уравнение общей касательной к параболам: $y = x^2 + 4x + 8$ и $x^2 + 8x + 4$.

$$(5)$$
 $x+y+2=0$

1) y-x-2=0 2) y=-x-2 3) y=8x+4 4) x+y-4=0 5) x+y+2=0 6) y=-x 7) y=-x+4 8) 8x-y+4=0

35. Выберите из нижеперечисленных ответов делители числа, равного значению площади боковой поверхности правильной треугольной призмы, описанной около цилиндра, радиус основания которого равен $\sqrt{3}$, а высота равна 3.

1) 12

- 2) 27
- 3) 3
- 4) 9 5) 24 6) 17
- 7)8 8) 14